NANOFIBRILAS DE CELULOSE PRODUZIDAS A PARTIR DE RESÍDUOS DE CASCA DE ACÁCIA-NEGRA (ACACIA MEARNSII DE WILD.)
Resumo
Texto completo:
PDFReferências
ALONSO-LERMA, B.; et al. High performance crystalline nanocellulose using an ancestral endoglucanase. Communications Materials, [S. l.], v. 1, n. 57, p. 1-10, 2020.
BORSOI, C. et al. Grape stalk fibers as reinforcing filler for polymer composites with a polystyrene matrix. Journal of Applied Polymer Science, [S. l.], v. 23, p. 1-10, 2019.
CAMACHO, M. et al. Synthesis and Characterization of Nanocrystalline Cellulose Derived from Pineapple Peel Residues. Journal of Renewable Materials, [S. l.], v. 5, n. 3, p. 1-9, 2017.
CHENG, Y. et al. Evaluation of High Solids Alkaline Pretreatment of Rice Straw. Applied Biochem Biotechnology, [S. l.], v. 162, p. 1768-1784, 2010.
DITZEL, F. I. et al. Caracterização da nanocelulose extraída a partir da farinha de madeira de pinus. In: CONGRESSO INTERNACIONAL DE CELULOSE E PAPEL, 50., 2017, São Paulo. Anais [...] São Paulo: ABTCP, 2017.
FLAUZILINO NETO, W. P.; SILVÉRIO, H. A.; DANTAS, N. O.; PASQUINI, D. Extraction and characterization of cellulose nanocrystals from agro-industrial residue – Soy hulls. Industrial Crops & Products, [S. l.], v. 42, p. 480-488, 2013.
GUNAN, I. B. W. et al. Enhanced delignification of corn straw with alkaline pretreatment at mild temperature. Rasayan J. Chem., [S. l.], v. 13, p. 1022-1029, 2020.
HASSAN, S. H. et al. TEMPO-oxidized nanocellulose films derived from coconut residues: Physicochemical mechanical and electrical properties. International Journal of Biological Macromolecules, [S. l.], v. 180, p. 392-402, 2021.
HUERTA, R. R.; SILVA, E. K.; EL-BIALY, T.; SALDANA, M. D. A. Clove essential oil emulsion-filled cellulose nanofiber hydrogel produced by high-intensity ultrasound technology for tissue engineering applications. UltrasonicsSonochemistry, [S. l.], v. 64, p. 104845, 2020.
JOHAR, N.; AHMAD, I.; DUFRESNE, A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, [S. l.], v. 37, p. 93-99, 2012.
KHALID, M. Y. et al. Recent advances in nanocellulose-based different biomaterials: types, properties, and emerging applications. Journal of Materials Research and Technology, [S. l.], v. 14, p. 2601-2623, 2021.
KOUTSIANITIS, D. et al. Properties of ultrasound extracted bicomponent lignocellulose thin films. Ultrasonics Sonochemistry, [S. l.], v. 23, p. 148-155, 2015.
LI, W.; YUE, J.; LIU, S. Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly (vinyl alcohol) composites. Ultrasonics Sonochemistry, [S. l.], v. 19, p. 479-485, 2012.
MOKHENA, T. C. et al. Mechanical properties of cellulose nanofibril papers and their bionanocomposites. Carbohydrate Polymers, [S. l.], v.273, p. 118507, 2021.
NOWOTNA, A.; PIETRUSKA, B.; LISOWSKI, P. Eco-Friendly Building Materials. Central Europe Towards Sustainable Building, [S. l.], v. 290, p. 12024, 2019.
OLIVEIRA, C. M. B. A Produção Cientifica em Sustentabilidade e a Contribuição da Ciência dos Materiais. 2012. 169 f. Dissertação (Mestrado em Ciência, Tecnologia e Sociedade) – Universidade Federal de São Carlos, São Carlos, 2012.
ORGANIZACAO DAS NACOES UNIDAS (ONU). https://brasil.un.org/pt-br/sdgs/12. Acesso em 23
OTONI, C. G. et al. High-pressure microfluidization as a green tool for optimizing the mechanical performance of all-cellulose composites. ACS Sustainable Chemistry & Engineering, [S. l.], v. 6, p. 12727-12735, 2018.
PANTHAPULAKKAL, S.; SAIN, M. Preparation and Characterization of Cellulose Nanofibril Films from Wood Fibre and Their Thermoplastic Polycarbonate Composites. Hindawi Publishing Corporation, [S. l.], v. 2012, p. 1-6, 2012.
PHANTHONG, P. et al. Extraction of Nanocellulose from Raw Apple Stem. Journal of the Japan Institute of Energy, [S. l.], v. 94, p. 787-793, 2015.
PRADHAN, D.; JAISWAL, A. K.; JAISWAL, S. Emerging technologies for the production of nanocellulose from lignocellulosic biomass. Carbohydrate Polymers, [S. l.], v. 285, p. 119258, 2022.
PERDOCH, W. et al. Influence of Nanocellulose Structure on Paper Reinforcement. Molecules, [S. l.], v. 27, p. 1-16, 2022.
RODRIGUES, T. L. et al. Efeitos das condições experimentais no processo de deslignificação dos resíduos da casca de acácia-negra (Acacia mearnsii De Wild.) via pré-tratamento alcalino. In: CONGRESSO BRASILEIRO DE SISTEMAS PARTICULADOS, 40., 2022, Uberlândia, Anais eletrônicos. Campinas: Galoa, 2022. p. 159164.
SHAHI, N. et al. Eco-Friendly Cellulose Nanofiber Extraction from Sugarcane Bagasse and Film Fabrication. Sustainability, [S. l.], v. 12, p. 1-15, 2020.
SHEN, X. et al. Comparison of Acid-hydrolyzed and TEMPO-oxidized Nanocellulose for Reinforcing Alginate Fibers. Bioresources, [S. l.], v. 12, n. 4, p. 8180-8198, 2017.
SOSIATI, H. et al. Morphology and crystallinity of sisal nanocellulose after sonication. AIP Conference Proceedings, [S. l.], v. 1877, p. 30003, 2017.
SOUZA, L. O. Caracterização reológica e morfológica de nanocelulose da casca de cacau para aplicação no desenvolvimento de filmes biodegradáveis. 2021. 107 f. Tese (Doutorado em Engenharia e Ciência de Alimentos) – Universidade Estadual do Sudoeste da Bahia, Itapetinga, 2021.
SUTKA, A. et al. Characterization of Cellulose Microfibrils Obtained from Hemp. Conference Paper in Materials Science, [S. l.], v. 2013, p. 1-5, 2013.
SZYMANSKA-CHARGOT, M. et al. The Influence of High-Intensity Ultrasonication on Properties of Cellulose Produced from the Hop Stems, the Byproduct of the Hop Cones Production. Molecules, [S. l.], v. 27, p. 1-14, 2022.
TAFLICK, T. Obtenção e caracterização de nanocompósitos de poli (ácido láctico) com nanocristais de celulose obtidos da casca de acácia. 2017. 115 f. Tese (Doutorado em Ciência dos Materiais) – Universidade Federal do Rio Grande do Sul, Porto Alegre, 2017.
VIEIRA, A. C. Produção de nanocelulose a partir da casca de eucalipto biodegradada por “Pycnoporus sanguineus”. 2018. 86 f. Dissertação (Mestrado em Agronomia) – Universidade Estadual Paulista, Botucatu, 2018.
WANG, S.; CHENG, W. A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication. Journal of Applied Polymer Science, [S. l.], v. 113, p. 1270-1275, 2009.
WANG, H. et al. Isolating nanocellulose fibrils from bamboo parenchymal cells with high intensity ultrasonication. De Gruytier, [S. l.], v. 70, p. 1-9, 2015.
ZHAO, H.; FENG, X.; GAO, H. Ultrasound technique for extracting nanofibers from natural materials. Applied Physics Letters, [S. l.], v. 90, p. 1-3, 2007.
Apontamentos
- Não há apontamentos.