AVALIAÇÃO DE TÉCNICAS DE SECAGEM E SEU EFEITO NO POTENCIAL BIOATIVO DE EXTRATOS DA FOLHAS DE OLIVEIRA
Resumo
O presente artigo tem como objetivo a secagem de folhas de oliveira aplicando duas técnicas de secagem (secagem convectiva e liofilização) e caracterizar os extratos das folhas secas verificando seu potencial bioativo. A secagem convectiva das folhas foi realizada em estufa de circulação de ar na temperatura de 40 °C e durante 24 h, e a liofilização foi realizada a uma temperatura de -50 °C por 48 h. Os extratos das folhas foram obtidos por maceração e caracterizados quanto compostos fenólicos totais e atividade antioxidante. A utilização das folhas após a secagem na forma de extratos é necessária para o desenvolvimento de novos produtos, como forma de minimização do descarte de resíduos produzidos pela olivicultura. Através dos resultados obtidos o extrato da folha de oliveira foi considerado como sendo fonte de compostos fenólicos com atividade antioxidante, podendo ser considerado um alimento funcional. Comparando as técnicas de secagem utilizadas, a secagem convectiva se sobressaiu, pois apresentou uma maior preservação dos compostos bioativos.
Texto completo:
PDFReferências
ABAZA, L. et al. Chétoui olive leaf extracts: influence of the solvent type on phenolics and antioxidant activities. Grasas y Aceites, v. 62, n. 1, p. 96–104, 2011.
AHMAD-QASEM, M. H. et al. Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innovative Food Science and Emerging Technologies, v. 17, p. 120–129, 2013.
AHMAD-QASEM, M. H. et al. Drying and storage of olive leaf extracts. Influence on polyphenols stability. Industrial Crops and Products, v. 79, p. 232–239, 2016.
BARBOSA, M. H.; GRAZIANO, K. U. Influence of wearing time on efficacy of disposable surgical masks as microbial barrier. Brazilian Journal of Microbiology, v. 37, n. 3, p. 216–217, 2006.
BELARMINO, L. C. et al. Análise econômica exploratória da olivicultura no Brasil e Espanha. VIII Simpósio da Ciência do Agronegócio 2020. Anais. 2020.
BRAND-WILLIAMS, W.; CUVELIER, M. E.; BERSET, C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, v. 28, n. 1, p. 25–30, 1995.
CAGLIARI, A. INFLUÊNCIA DA SECAGEM CONVECTIVA EM LEITO FIXO SOBRE AS PROPRIEDADES DA FOLHA DE OLIVEIRA (Olea europaea L.). [s.l.] Universidade Federal do Pampa, 2017.
CALÍN-SÁNCHEZ, A. et al. Comparison of Traditional and Novel Drying Techniques and Its Effect on Quality of Fruits, Vegetables and Aromatic Herbs. Foods, v. 9, n. 1261, 2020.
CASTELO-BRANCO, V. N.; TORRES, A. G. Capacidade antioxidante total de óleos vegetais comestíveis : determinantes químicos e sua relação com a associations with oil quality. v. 24, n. 1, p. 173–187, 2011.
CAVALHEIRO, C. V. et al. Olive leaves offer more than phenolic compounds - Fatty acids and mineral composition of varieties from Southern Brazil. Industrial Crops and Products, v. 71, p. 122–127, 2015a.
CAVALHEIRO, C. V. et al. Olive leaves offer more than phenolic compounds - Fatty acids and mineral composition of varieties from Southern Brazil. Industrial Crops and Products, v. 71, p. 122–127, 2015b.
COPPA, C. F. S. C. et al. Extração de oleuropeína a partir de folhas de oliveira utilizando solvente hidroalcoólico. Brazilian Journal of Food Technology, v. 20, 2017.
COSTA, L. T. Desempenho competitivo da cadeia produtiva do azeite de oliva extravirgem no Rio Grande do Sul. [s.l.] Federal University of Rio Grande do Sul, 2019.
DUAN, X. et al. Technical aspects in freeze-drying of foods. Drying Technology, v. 34, n. 11, p. 1271–1285, 2016.
EL, S. N.; KARAKAYA, S. Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nutrition Reviews, v. 67, n. 11, p. 632–638, 2009.
ELKACMI, R. et al. Techno-economical evaluation of a new technique for olive mill wastewater treatment. Sustainable Production and Consumption, v. 10, p. 38–49, 2017.
ERBAY, Z.; ICIER, F. Optimization of hot air drying of olive leaves using response surface methodology. Journal of Food Engineering, v. 91, p. 533–541, 2009.
ERBAY, Z.; ICIER, F. Thin-layer drying behaviors of olive leaves (Olea europaea L.). Journal of Food Process Engineering, v. 33, p. 287–308, 2010.
FARES, R. et al. The Antioxidant and Anti-proliferative Activity of the Lebanese Olea europaea Extract. Plant Foods for Human Nutrition, v. 66, n. 1, p. 58–63, 2011.
GEANKOPLIS, C. J. Procesos de Transporte y Operaciones Unitarias. 3. ed. [s.l.] CECSA, 1998.
GIACOMETTI, J.; ŽAUHAR, G.; ŽUVIĆ, M. Optimization of ultrasonic-assisted extraction of major phenolic compounds from olive leaves (Olea europaea L.) using response surface methodology. Foods, v. 7, n. 9, p. 1–14, 2018.
KERMANSHAH, Z. et al. Olive leaf and its various health-benefitting effects: a review study. Pakistan Journal of Medical and Health Sciences, v. 14, n. 2, p. 1301–1312, 2020.
KESELJ, K. et al. Comparison of energy consumption in the convective and freeze drying of raspberries. Journal on Processing and Energy in Agriculture, v. 21, n. 4, p. 192–196, 2017.
KIRITSAKIS, K.; GOULA, A. M.; ADAMOPOULOS, K. G. Valorization of Olive Leaves : Spray Drying of Olive Leaf Extract. Waste and Biomass Valorization, v. 9, n. 0, p. 616–633, 2017.
LAMA-MUÑOZ, A. et al. Optimization of oleuropein and luteolin-7-o-glucoside extraction from olive leaves by ultrasound-assisted technology. Energies, v. 12, n. 13, 2019.
LAMPROU, G. K. et al. Statistical optimization and kinetic analysis of the extraction of phenolic compounds from olive leaves. Journal of Chemical Technology and Biotechnology, v. 95, n. 2, p. 457–465, 2020.
LEE, O. H.; LEE, B. Y. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresource Technology, v. 101, n. 10, p. 3751–3754, 2010.
MAGALHÃES, L. M. et al. Methodological aspects about in vitro evaluation of antioxidant properties. Analytica Chimica Acta, v. 613, n. 1, p. 1–19, 2008
.
MARTINAZZO, A. P. et al. Modelagem matemática e parâmetros qualitativos da secagem de folhas de capim limão [Cymbopogon citratus (DC.) Stapf]. Revista Brasileira de Plantas Medicinais, v. 12, p. 488–498, 2010.
MARTÍNEZ-VALVERDE, I.; PERIAGO, M. J.; ROS, G. Significado nutricional de los compuestos fenólicos de la dieta. Archivos Latinoamericanos de Nutricion, v. 50, p. 5–18, 2000.
MARTINY, T. R. et al. A novel biodegradable film based on k-carrageenan actived with olive leaves extract. Food Science & Nutrition, v. 00, p. 1–10, 2020a.
MARTINY, T. R. et al. A novel biodegradable film based on κ-carrageenan activated with olive leaves extract. Food Science and Nutrition, v. 8, n. 1, p. 3147–3156, 2020b.
MOHAMMADI, A. et al. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chemistry, v. 190, 2016.
MOUDACHE, M. et al. Phenolic content and antioxidant activity of olive by-products and antioxidant film containing olive leaf extract. Food Chemistry, v. 212, p. 521–527, 2016.
NUNES, M. A. et al. Olive by-products for functional and food applications: Challenging opportunities to face environmental constraints. Innovative Food Science and Emerging Technologies, v. 35, p. 139–148, 2016.
OMAR, S. H. Oleuropein in olive and its pharmacological effects. Scientia Pharmaceutica, v. 78, n. 2, p. 133–154, 2010.
PUTNIK, P. et al. Green Extraction Approach for the Recovery of Polyphenols from Croatian Olive leaves (Olea europea). Food and Bioproducts Processing, 2017.
ROMERO, C. et al. New by-products rich in bioactive substances from the olive oil mill processing. J Sci Food Agric., v. 98, n. 1, p. 225–230, 2018.
ROSA, G. S. DA et al. Eco-friendly extraction for the recovery of bioactive compounds from Brazilian olive leaves. Sustainable Materials and Technologies, v. 28, p. e00276, 2021.
ŞAHIN, S.; BILGIN, M. Olive tree ( Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review. Journal of the Science of Food and Agriculture, v. 98, n. 4, p. 1271–1279, mar. 2018.
SENADEERA, W. et al. Influence of different hot air drying temperatures on drying kinetics, shrinkage, and colour of persimmon slices. Foods, v. 9, n. 1, p. 5–7, 2020.
SINGLETON, V. L.; ROSSI, J. A. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture, v. 16, p. 144–158, 1965.
SUN, Z.; OSTRIKOV, K. (KEN). Future antiviral surfaces : Lessons from COVID-19 pandemic. Sustainable Materials and Technologies, v. 25, p. e00203, 2020.
Apontamentos
- Não há apontamentos.